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Continuity of the Temperature and Derivation of the 
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For a classical system of interacting particles we prove, in the micro- 
canonical ensemble formalism of statistical mechanics, that the thermo- 
dynamic-limit entropy density is a differentiable function of the energy 
density and that its derivative, the thermodynamic-limit inverse tempera- 
ture, is a continuous function of the energy density. We also prove that the 
inverse temperature of a finite system approaches the thermodynamic-limit 
inverse temperature as the volume of the system increases indefinitely. 
Finally, we show that the probability distribution for a system of fixed size 
in thermal contact with a large system approaches the Gibbs canonical 
distribution as the size of the large system increases indefinitely, if the 
composite system is distributed microcanonically. 
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1. I N T R O D U C T I O N  

F o r  any system in stat is t ical  mechanics ,  experience leads us to  believe tha t  
the  t empera tu re  is a cont inuous  funct ion o f  the energy. Tha t  is, we expect  
tha t  no  ma t t e r  how simple or  compl ica ted  a system may  be, its t he rmo-  
dynamic  behav ior  will be such tha t  no " p h a s e  t r a n s i t i o n "  will occur  in which  
the  t empera tu re  changes abrupt ly .  In  this pape r  we give a r igorous  p r o o f  tha t  

for  a classical  system o f  part icles  the  t he rmodynamic - l imi t  en t ropy  densi ty  is 
a differentiable funct ion o f  the  energy densi ty  and tha t  its derivat ive,  the  

t he rmodynamic - l imi t  inverse t empera tu re ,  is a con t inuous  funct ion o f  the  
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energy density. We also prove that the inverse temperature of a finite system 
approaches the thermodynamic-limit inverse temperature as the volume of 
the finite system increases indefinitely. As a corollary, we show that the 
probability distribution of a small system in thermal contact with a large one 
approaches the Gibbs canonical distribution as the large system increases 
indefinitely, if the composite system is distributed microcanonically. 

The proofs follow from the properties of convex functions. In particular, 
the continuity of the thermodynamic-limit inverse temperature as a function 
of the energy density follows from the concavity of the thermodynamic-limit 
entropy density and the convexity in the energy density of a certain monotonic 
function of the thermodynamic-limit entropy density. The convexity of this 
function is established with the help of the Schwarz inequality. The only 
assumptions needed for these results are the stability and temperedness of the 
potential (Ref. 1, pp. 32-33). 

2. D E F I N I T I O N S  

We consider a system of n identical particles of mass m enclosed in a 
v-dimensional container A with total energy E. The microcanonical partition 
function f2a is defined by 

OA(E,n) = (n!)-: f^. dx fn.. dpS+[E- H(x,p)] (l) 

w h e r e  (x, p) = (x: ..... x~, p ~  . . . . .  p ~ ) ,  d x  : dx[ l I" dx~, dp : dpl "11 dp~, with 
x~ E A, p~ ~ R v. The symbols x~ and p~, respectively, denote the position and 
momentum vectors of the ith particle. The symbol 8 § denotes the unit step 
function defined by 8+(t) = 1 for t > 0 and 8+(t) = 0 for t < 0. The function 
H is the Hamiltonian of the system defined by 

H(x, p) = (2m)-: ~ p2 + U(x) 
i = l  

where U denotes the potential energy. 
Let E~ ~ denote the infimum of the potential U for x s A ~, which exists 

since the potential U is stable. Then, if E > E~ ~ we define the entropy SA, 
taking units where Boltzmann's constant is 1, by 

SA(E, n) = log f~A(E, n) (2) 

The entropy density sA, which is a function of the energy density E and the 
number density p, is defined by 

sa(E, p) = V-:(A)Sa(E, n) (3) 
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where E = El V(A) and p = n/V(A) and V(A) denotes the volume of the 
container A. 

For E > ek ~ with e~o> = E[O~/V(A), the inverse temperature/3A is defined 
by 

/3A(~, P) = esA(r p)/O, = f2A'(E, n)/~A(E, n) (4) 

where f~A' denotes the partial derivative of ~A with respect to E. 
For stable tempered potentials, the thermodynamic-limit entropy 

density is defined by 

s(,, p) = lim s^(,A, PA) (5) 

where {cA} and {pa} are sequences which approach r and p as A increases 
indefinitely in the sense of Fisher. The existence of the limit in (5) is proved 
by Ruelle (Ref. 1, Chapter 3), provided that (E, p) lies on a certain convex set 0 
(whose exact definition is not important for our purposes). 

The thermodynamic-limit entropy density is a concave function of 
(Ref. 1, Chapter 3). Hence (Ref. 2, p. 5), the left- and right-hand partial 
derivatives with respect to E exist for all (~, p) ~ 0. Denoting these derivatives 
by/3_ and/3 +, respectively, they must satisfy the inequality 

/3 + (r p) ~< /3_ (,, p) (6) 

Wherever the left and right derivatives of s with respect to E coincide they are 
continuous (ReE 2, p. 7) and we define the thermodynamic-limit inverse 
temperature/3 as this common value. 

3. CONTINUITY OF THE TEMPERATURE 

We start by proving that in the microcanonical ensemble formalism the 
thermodynamic-limit entropy density s is a differentiable function of the 
energy density and that the thermodynamic-limit inverse temperature/3 is 
continuous in the energy density ~. The proof follows from the concavity of s 
and the convexity in E of a function ~ related to s by Eq. (11) below. Next, 
we prove that the inverse temperature of a finite system approaches the 
thermodynamic-limit inverse temperature as the volume of the finite system 
increases indefinitely. 

If  we integrate Eq. (t) with respect to the momenta, we find that 

(2rrm)"~I2 fa dx [E - U(x)] "~12 3 + [E - U(x)] (7) f~A(E, n) = n! F(nv/2 + 1) , 

where F denotes the gamma function. On the other hand, from Eq. (4) we 
note that 

e/3n(,, p) , (  ~A(E, n)f2~(E, n) "~ 
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where YL~ denotes the partial derivative of f2n' with respect to E. By differ- 
entiating formula (7) we can obtain integral formulas for ~A'(E, n) and 
~ ( E ,  n). These integrals are related, if nv/2 > 2, by the Schwarz inequality 

dx [E - U(x)] ~'/2-1 3 + [E - U(x)] 
n 

<~ ( dx [E - U(x)] ~''2 3 + [E - U(x)] 
JA n 

• ( dx [E - V(x)W ~- ~ ~ + [E - U(x)] 
vA n 

From this inequality and Eq. (7) we obtain 

f~A(E, n)f~.(E, n) 2 
[~ i (E,n)]  ~ > l - - -  B y  

Using this in Eq. (8), we find that 

ab'A(,, p) + 2 
a ~  v~/3A=(E' P) ~> 0 (9) 

Now, let aA be the function defined by 

aA(e, p) = exp[(2/vp)sA(e, p)] (10) 

Then 

a2aA(a, p) _ 2 [ p ~  2 ] 

From this expression and inequality (9) it follows that % is convex in E. Let 
a be the thermodynamic limit of  aA, which exists in view of Eq. (5). That is, 

a(,, p) = lim %(,,  p) = exp[(2/vp)s(a, P)] 
_/k-~ Go 

(11) 

The function a is convex in a since it is the limit of a sequence of  convex 
functions (Ref. 2, p. 17). Hence, its left- and right-hand derivatives with 
respect to a, which we denote by ~a/&_ and aa/&+, respectively, exist, are 
continuous except, at most, on a countable number of  points, and satisfy the 
inequality 

a,,(,, p)/a,_ <. a~(,, p)/a,+ 

By Eq. (11) this implies that 

5- ( , ,  p) ~< 5+(,,  v) (12) 



Temperature and Derivation of the Gibbs Canonical Distribution 363 

From inequalities (6) and (12) it follows that/3_ = 8§ for all E and hence 
that the thermodynamic-limit entropy density s is a differentiable function of  

and that its derivative, the thermodynamic-limit inverse temperature fl, is 
continuous in e. 

There is a theorem on convex functions (Ref. 2, p. 20; Ref. 3), which 
states that if a sequence of differentiable convex functions has a limit, then the 
sequence of derivatives converges to the derivative of the limit function at the 
points where the latter is continuous. Applying this theorem to the sequence 
of  functions ~A, we have 

lim Sea(e, p)/8, = Oa(,, p)/~e 
A--~ oo 

since 8a(E, p)/8e is continuous in E. This result may also be written 

lim /3A(E, p) = /3(~, p) (13) 
A ~ o  

4. D E R I V A T I O N  OF THE C A N O N I C A L  D I S T R I B U T I O N  

To prove that a finite system in thermal contact with an infinite heat bath 
is distributed canonically, we first use the above results to show that in the 
thermodynamic limit 

tim ~2A(E -- AE, n) = exp[-- AEfl(E, p)] (14) 
^-. ~ s n) 

whenever E~ V(A) ~ E, n/V(A) --~ p with (e, O) s 0 as A increases indefinitely 
in the sense of Fisher, and AE 1> 0 is arbitrary and does not depend on A. 

Let us define A~ = AE/V(A) = AEp/n, where Ae i> 0. Since ~a is convex 
in ~, we have 

~(~ _+ ~., p) >1 .~(., p) _+ (2A./~p)~A(., 0)~( ' ,  P) (15) 

Using Eqs. (2), (3), (10), and (t5) we may write 

f2a(E + AE, n) = [a^(e + Ae, p)qn~'2 

~A(E, n) L aa(', P) ] 

>/ [1 2A~ 1 

= exp -2 log I ~ 1 __. (2A,/~p):~(,, p)J) 

+ AEflA(,, p) (16) 
/> exp 1 + ~2Ae/vp)flA(e, p) 
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where we have used the fact that log(1 + x) ~< x. For the case of the plus 
sign in (16), we replace E by E - AE to obtain 

-- AE~^(e, p) f2A(E - AE, n) 
exp 1 - (2Ae/vp)~A(r p) ~ ~2A(E, n) 

-AE~A(~ - A~, p) 
~< exp 1 + (2A,/vp)flA(e -- Ae, p) 

Finally, letting A grow indefinitely, (14) follows, since fi is continuous in e. 
We now consider a finite system 5 #(:>, whose Hamiltonian we denote by 

H (:~, in thermal contact with a system 5 e(z) enclosed in a finite container A, 
which we call the heat bath. (By "thermal contact" we mean that there is an 
interaction between S #(:~ and 5 :(2~ strong enough to bring the composite 
system to equilibrium but not strong enough to affect the total energy 
appreciably.) We want to find the probability distribution for 5e(:>, when the 
composite system is distributed microcanonically and 5 :(2> grows indefinitely 
while 5:(:~ remains unchanged. We know (6> that the probability density 
t~.~ ~ on the phase space of 5 :(:> is given by 

/~k:>(x, p) = CAf~2x(EA - H(:'(x, p), n) 

where now (x, p) denotes a point in the phase space of 5:(:), Ca is a normaliz- 
ing constant given by 

CA=[f dx f dpf~A(E-H(:~(x,p),n)] -: 
and the integration is carried out over the phase space of 5:<:). With the help 
of (14) we then find that 

exp[-/3(E, p)H<:)(x, p)] (17) 
lim tL~:>(x, p) = f d x f  dp exp[-/3(E, p)H(:>(x, p)] A ~ a o  

This shows that the probability distribution for a small system in thermal 
contact with an infinitely large heat bath is the Gibbs canonical distribution. 

5. C O N C L U S I O N S  

We have proved that in the microcanonical ensemble formalism of 
classical statistical mechanics the thermodynamic-limit entropy density is a 
differentiable function of the energy density and that its derivative, the 
thermodynamic-limit inverse temperature, is continuous in the energy density. 
We have also proved that the inverse temperature of a finite system approaches 
the thermodynamic-limit inverse temperature as the volume of the system 
increases indefinitely. Finally, we proved that the probability distribution for 
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a finite, classical system in thermal contact with an infinite heat bath, the 
composite system being distributed microcanonically, is the Gibbs canonical 
distribution. 

One of the aims of equilibrium statistical mechanics is to establish 
sufficient conditions on the microscopic interactions in a system composed 
of a great number of particles, in order that the system exhibit thermody- 
namic behavior. That is, we would like to be able to prove, for suitable 
systems, that the postulates of thermodynamics apply in the thermodynamic 
limit. In Callen's ~5~ postulational approach to thermodynamics, one of the 
postulates is that the entropy density is a continuous and differentiable 
function of the energy density. Our result shows that Callen's postulate 
applies to classical systems of particles with stable and tempered potentials. 

There has been some previous work on the problems considered in this 
paper. The canonical distribution formula (17) for the case where the heat 
bath is an ideal monatomic classical gas goes back to Maxwell. (~ For the 
case where the heat bath consists of a large number of identical noninteracting 
classical components of arbitrary structure, the result was proved by Khin- 
chin. (6~ Mazur and Van der Linden (7~ extended Khinchin's proof to systems of 
particles interacting by potentials of a special type (square well interaction). 
They assumed that/3 is not a limit point of complex zeros of the canonical 
partition function, so that their result does not apply at the temperature of a 
phase transition. 

In a later paper (8~ Van der Linden considered the related problem of 
proving that the thermodynamic limit of the inverse temperature exists and 
is equal to the thermodynamic-limit inverse temperature [Eq. (13) above]. 
His proof, which is quite complicated, starts from inequality (9) and applies 
to any stable and tempered potential. Like ours, his proof depends on the 
continuity of the thermodynamic-limit inverse temperature. In his paper, 
this continuity is proved by using the thermodynamic equivalence of the 
microcanonical and canonical ensembles, whereas we are able to avoid 
appealing to this equivalence. 

The problem of proving that the thermodynamic-limit temperature is 
continuous can also be considered in its own right. As commented by Griffiths 
and by Lieb, (9~ once the thermodynamic equivalence of the microcanonical 
and canonical ensembles is established, the continuity of the thermodynamic- 
limit temperature follows from the fact that this continuity is equivalent to 
strict convexity of the function f defined by 

f(/3, p) = sup [s(,, p) - 13,] 

In turn, this strict convexity property can be established from the fact that 
the canonical partition function factors into a product of configurational and 
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kinetic parts, the first being at least log-convex and the second strictly 
log-convex. 

There appears to be no difficulty in generalizing our results to other types 
of  classical systems with kinetic degrees of  freedom, but it still remains to be 
seen if the results hold in the quantum mechanical case. 
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NOTE A D D E D  IN P R O O F  

The argument given to justify (14) is incomplete. Continuity of fl in 
is not enough; we also need uniform convergence in e of the sequence of 
functions 3A. This uniformity follows from the uniform convergence of the 
sequence of functions 9aA/Oe, which in turn follows from the convexity of 
% in E and the continuity of &r/~E. 
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